Digital House Products





imageedit_5_3949838586

Website Investments

Digital House Products

Digital Home - Home Automation - Room Audio - CCTV

Home Lighting - Sprinkler - Pool Light - Keyless Entry






Power Plant Instrumentation And Control Handbook

RRP $277.95

Click on the Google Preview image above to read some pages of this book!

The book discusses instrumentation and control in modern fossil fuel power plants, with an emphasis on selecting the most appropriate systems subject to constraints engineers have for their projects. It provides all the plant process and design details, including specification sheets and standards currently followed in the plant. Among the unique features of the book are the inclusion of control loop strategies and BMS/FSSS step by step logic, coverage of analytical instruments and technologies for pollution and energy savings, and coverage of the trends toward filed bus systems and integration of subsystems into one network with the help of embedded controllers and OPC interfaces. The book includes comprehensive listings of operating values and ranges of parameters for temperature, pressure, flow, level, etc of a typical 250/500 MW thermal power plant. Appropriate for project engineers as well as instrumentation/control engineers, the book also includes tables, charts, and figures from real-life projects around the world.

  • Covers systems in use in a wide range of power plants: conventional thermal power plants, combined/cogen plants, supercritical plants, and once through boilers
  • Presents practical design aspects and current trends in instrumentation
  • Discusses why and how to change control strategies when systems are updated/changed
  • Provides instrumentation selection techniques based on operating parameters. Spec sheets are included for each type of instrument.
  • Consistent with current professional practice in North America, Europe, and India


Biological Control Of Photosynthesis

RRP $39.99

Click on the Google Preview image above to read some pages of this book!

All measurements of intact leaf 02 sensitivity can be explained by the oxygenation model for glycolate formation and glycolate metabolism by established pathways. Predicting the rate of oxygenation from the underlying biochemistry is more reliable than calculating the rate of oxygenation from intact leaf gas exchange measurements. REFERENCES 1. Badger MR, TD Sharkey, S von Caemmerer: The relationship between steady-state gas exchange of bean leaves and the levels of carbon reduction cycle intermediates. Planta 160:305-313, 1984. 2. Bowes, G, WL Ogren, RH Hageman: Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45:716-722, 1971. 3. Farquhar GD, S von Caemmerer, JA Berry: A biochemical model of photosynthetic C02 assimilation in leaves of C3 species. Planta 149: 78-90, 1980. 4. Farquhar GD, S von Caemmerer: Modelling of photosynthetic response to environmental conditions. In OL Lange, PS Nobel, CB Osmond, H Ziegler, eds, Encycl. of Plant Physiol., New Series, Springer- Verlag, Heidelberg 12b: 549-587, 1982. 5. Jordan DB, WL Ogren: The C02/02 specificity of ribulose 1- bisphosphate carboxylase/oxygenase. Dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161: 308-313, 1984. 6. Ku SB, GE Edwards: Oxygen inhibition of photosynthesis. I. Temperature dependence and relation to 02/C02 solubility ratio. Plant Physiol 59: 986-990, 1977. 7. Laing WA, WL Ogren, RL Hageman: Regulation of soybean net photosynthetic C02 fixation by the interaction of C02' 02 and ribulose l,5-diphosphate carboxylase. Plant Physiol 54: 678-685, 1974.


Biological Control Of Photosynthesis

RRP $793.99

Click on the Google Preview image above to read some pages of this book!

All measurements of intact leaf 02 sensitivity can be explained by the oxygenation model for glycolate formation and glycolate metabolism by established pathways. Predicting the rate of oxygenation from the underlying biochemistry is more reliable than calculating the rate of oxygenation from intact leaf gas exchange measurements. REFERENCES 1. Badger MR, TD Sharkey, S von Caemmerer: The relationship between steady-state gas exchange of bean leaves and the levels of carbon reduction cycle intermediates. Planta 160:305-313, 1984. 2. Bowes, G, WL Ogren, RH Hageman: Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45:716-722, 1971. 3. Farquhar GD, S von Caemmerer, JA Berry: A biochemical model of photosynthetic C02 assimilation in leaves of C3 species. Planta 149: 78-90, 1980. 4. Farquhar GD, S von Caemmerer: Modelling of photosynthetic response to environmental conditions. In OL Lange, PS Nobel, CB Osmond, H Ziegler, eds, Encycl. of Plant Physiol., New Series, Springer- Verlag, Heidelberg 12b: 549-587, 1982. 5. Jordan DB, WL Ogren: The C02/02 specificity of ribulose 1- bisphosphate carboxylase/oxygenase. Dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161: 308-313, 1984. 6. Ku SB, GE Edwards: Oxygen inhibition of photosynthesis. I. Temperature dependence and relation to 02/C02 solubility ratio. Plant Physiol 59: 986-990, 1977. 7. Laing WA, WL Ogren, RL Hageman: Regulation of soybean net photosynthetic C02 fixation by the interaction of C02' 02 and ribulose l,5-diphosphate carboxylase. Plant Physiol 54: 678-685, 1974.


High Temperature Component Life Assessment

RRP $1.00

Click on the Google Preview image above to read some pages of this book!

The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.


Tandem Cold Metal Rolling Mill Control

RRP $519.99

Click on the Google Preview image above to read some pages of this book!

This book deals with a novel and practical advanced method for control of tandem cold metal rolling processes based on the emerging state-dependent Riccati equation technique. After a short history of tandem cold rolling, various types of cold rolling processes are described. A basic mathematical model of the process is discussed, and the diverse conventional control methods are compared. A detailed treatment of the theoretical and practical aspects of the state-dependent algebraic Riccati equation technique is given, with specific details of the new procedure described and results of simulations performed to verify the control model and overall system performance with the new controller coupled to the process model included. These results and data derived from actual operating mills are compared showing the improvements in performance using the new method. Material is included which shows how the new technique can be extended to the control of a broad range of large-scale complex nonlinear processes.



Search

Digital House Products Articles

Digital Home Home Automation Room Audio CCTV
Home Lighting Sprinkler Pool Light Keyless Entry
Temperature Control Automation Control Touch Automation Automation Equipment

Digital House Products Books

Digital Home Home Automation Room Audio CCTV
Home Lighting Sprinkler Pool Light Keyless Entry
Temperature Control Automation Control Touch Automation Automation Equipment

Digital House Products





imageedit_5_3949838586

Website Investments